
Suggested Solution to Test 11

1. (a) First, consider

⟨u, (2, 2, 1)⟩ = 0

a(2) + (−1)(2) + 0(1) = 0

a = 1

and

∥v∥ = 3√
b2 + (−1)2 + b2 = 3

2b2 + 1 = 9

b2 = 4

b = 2 or b = −2 (rejected as b > 0)

(b) From (a), we have u = (1,−1, 0) and v = (2,−1, 2).
Then, we have

u× v =

∣∣∣∣∣∣
i j k
1 −1 0
2 −1 2

∣∣∣∣∣∣
= −2i− 2j+ k

Thus, we have
⟨w,u× v⟩ = 2(−2) + 1(−2) + (−1)(1) = −7.

(c) The area required is ∥u× v∥ =
√

(−2)2 + (−2)2 + 12 = 3.
(d) The volume of the tetrahedron generated by u,v and w is

1

3

(
1

2
∥u× v∥

)(
|⟨w,u× v⟩|
∥u× v∥

)
=

1

6
|−7|

=
7

6
cubic units

(e) The distance between w and the plane spanned by u and v is

d =
Volume of the Tetrahedron

1
3
× (Base area of the triangle spanned by u and v)

=
7
6

1
3
· 3
2

=
7

3

2. (a) The directional of the line segment is (2, 7)− (−5, 2) = (7, 4).
Thus, we can parametrize the line segment by

r(t) = (−5, 2) + t(7, 4) = (−5 + 7t, 2 + 4t), t ∈ (0, 1)

1If you have any problems or typos, please contact me via maxshung.math@gmail.com

1



(b) The Cartesian equation of the circle is

(x− 7)2 + (y + 5)2 = 32

Letting {
x− 7 = 3 cos t

y + 5 = 3 sin t

for t ∈ [0, 2π).
Thus, we can parametrize the circle by

r(t) = (7 + 3 cos t,−5 + 3 sin t), t ∈ [0, 2π)

(c) Rewrite the equation of the ellipse as(
x− 5

3

)2

+

(
y − 3

2
√
2

)2

=
(√

2
)2

Letting 
x− 5

3
=

√
2 cos t

y − 3

2
√
2

=
√
2 sin t

for t ∈ [0, 2π).
Thus, we can parametrize the ellipse by

r(t) =
(
5 + 3

√
2 cos t, 3 + 4 sin t

)
, t ∈ [0, 2π)

(d) Rewrite the equation of the hyperbola as

9x2

4
− y2

18
= 1(

x

2/3

)2

−
(

y

3
√
2

)2

= 1

Letting 
x

2/3
= − cosh t

y

3
√
2
= sinh t

for t ∈ R.
Thus, we can parametrize the hyperbola by

r(t) =

(
−2

3
cosh t, 3

√
2 sinh t

)
, t ∈ R

Note. We may also use sec and tan to parametrize it by letting
x

2/3
= sec t

y

3
√
2
= tan t

for t ∈
(
π

2
,
3π

2

)

An alternative parametrization for the hyperbola is

r(t) =

(
2

3
sec t, 3

√
2 tan t

)
, t ∈

(
π

2
,
3π

2

)
2



3. (a) Since

r′(t) =

(
sec2 t− 1, tan t · sec2 t− sec t tan t

sec t

)
=

(
tan2 t, tan t(sec2 t− 1)

)
=

(
tan2 t, tan3 t

)
and tan t ̸= 0 for all 0 < t < π

4
and so r′(t) ̸= 0.

Thus, r(t) is a regular parametrized curve.
(b) From (a), note that

∥r′(t)∥ =
√

(tan2 t)2 + (tan3 t)2

= tan2 t
√
1 + tan2 t

= (sec2 t− 1) sec t

= sec3 t− sec t

Thus, the arclength of r(t) over
(
0, π

4

)
is∫ π

4

0

∥r′(t)∥dt =
∫ π

4

0

(sec3 t− sec t) dt

=
sec t tan t

2

∣∣∣∣π4
0

+
1

2

∫ π
4

0

sec t dt−
∫ π

4

0

sec t dt

=

√
2

2
− 0− 1

2

∫ π
4

0

sec t dt

=

√
2

2
− 1

2
ln |sec t+ tan t|

∣∣∣∣π4
0

=

√
2

2
− 1

2
ln
(√

2 + 1
)

4. (a) By direct computation, we have

cosh2 x− sinh2 x =

(
ex + e−x

2

)2

−
(
ex − e−x

2

)2

=

(
ex + e−x + ex − e−x

2

)(
ex + e−x − ex + e−x

2

)
= ex · e−x

= 1

for any x ∈ R.
(b) Since

x =
ey − e−y

2
2x = ey − e−y

e2y − 2xey − 1 = 0

ey =
2x+

√
(2x)2 − 4(1)(−1)

2
or ey =

2x−
√

(2x)2 − 4(1)(−1)

2
(rejected ∵< 0)

ey =
2x+

√
4(x2 + 1)

2

y = ln
(
x+

√
x2 + 1

)
for any x ∈ R.
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(c) (i) r′(t) = (1, sinh t) and ∥r′(t)∥ =
√

1 + sinh2 t = cosh t.
(ii) The arc-length function of r(t) is

s =

∫ t

0

∥r′(u)∥ du

=

∫ t

0

coshu du

= sinh t

Therefore, we have t = sinh−1 s = ln
(
s+

√
1 + s2

)
.

Thus, the arclength parametrization of catenary is

r(s) =
(
ln
(
s+

√
1 + s2

)
, cosh(sinh−1 s)

)
=

(
ln(s+

√
1 + s2),

√
1 + sinh2(sinh−1 s)

)
=

(
ln(s+

√
1 + s2),

√
1 + s2

)
, s > 0

5. (a) Note that ∥∥∥∥(A+ AT

2

)
u

∥∥∥∥2

+

∥∥∥∥(A− AT

2

)
u

∥∥∥∥2

= uT

(
A+ AT

2

)T (
A+ AT

2

)
u+ uT

(
A− AT

2

)T (
A− AT

2

)
u

= uT

(
A+ AT

2

)2

u− uT

(
A− AT

2

)2

u

= uT

[
A2 + AAT + ATA+ (AT )2

4
− A2 − AAT − ATA+ (AT )2

4

]
u

= uT

(
AAT + ATA

2

)
u

=
1

2
uTAATu+

1

2
uTATAu

=
1

2
(ATu)T (ATu) +

1

2
(Au)T (Au)

=
1

2
∥ATu∥2 + 1

2
∥Au∥2

(b) Since
A+ AT

2
is symmetric, and left multiplying uT on both sides, then

uT

(
A+ AT

2

)2

u = uT0

uT

(
A+ AT

2

)T (
A+ AT

2

)
u = 0〈(

A+ AT

2

)
u,

(
A+ AT

2

)
u

〉
= 0∥∥∥∥(A+ AT

2

)
u

∥∥∥∥2

= 0

Thus, we have
(
A+ AT

2

)
u = 0, and follows that ATu = −Au.
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Alternative Solution.

From (a), if
(
A+ AT

2

)2

u = 0, then

∥∥∥∥(A− AT

2

)
u

∥∥∥∥2

=
1

2
∥Au∥2 + 1

2
∥ATu∥2

uT

(
A− AT

2

)T (
A− AT

2

)
u =

1

2
uTATAu+

1

2
uTAATu

uT

[
−A2 − AAT − ATA+ (AT )2

4
− 1

2
ATA− 1

2
AAT

]
u = 0

−uT

(
A2 + AAT + ATA+ (AT )2

4

)
u = 0

uT

(
A+ AT

2

)T (
A+ AT

2

)
u = 0〈(

A+ AT

2

)
u,

(
A+ AT

2

)
u

〉
= 0∥∥∥∥(A+ AT

2

)
u

∥∥∥∥2

= 0

Thus, we have
(
A+ AT

2

)
u = 0, and follows that ATu = −Au.

(c) Proceed similar as part (b), we have

vT

(
A− AT

2

)2

v = vT0

−vT

(
A− AT

2

)T (
A− AT

2

)
v = 0∥∥∥∥(A− AT

2

)
v

∥∥∥∥2

= 0

Therefore, it follows that
A− AT

2
v = 0 for any v ∈ R3 \ {0}, that is

ATv = Av

By taking v as

1
0
0

 ,

0
1
0

 and

0
0
1

 respectively, it follows that

 AT

1
0
0

 AT

0
1
0

 AT

0
0
1

  =

 A

1
0
0

 A

0
1
0

 A

0
0
1

 
AT

1 0 0
0 1 0
0 0 1

 = A

1 0 0
0 1 0
0 0 1


AT = A

By definition, A is symmetric and thus the claim is correct.
Remark. Taking any three linearly independent column vectors are acceptable, need not
to be orthonormal basis for R3.
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6. (a) Since ∥r(t) − c∥ = C, where C is a non-zero constant for any t ∈ [a, b] and r(t) ∈ R3

which is a space curve.
Thus r(t) is a closed curve lying on the sphere centered at c with radius C.

(b) (i) From (a), differentiating ∥r(t)− c∥2 = C2 with respect to t on both sides,

d

dt
⟨r(t)− c, r(t)− c⟩ = d

dt
C2〈

r(t)− c, r′(t)− d

dt
c

〉
+

〈
r′(t)− d

dt
c, r(t)− c

〉
= 0

⟨r(t)− c, r′(t)⟩ = 0

for any t ∈ (a, b). (*We ignore the differentiability at the end points of [a, b].)
(ii) Assume that s′(t) exists for any t ∈ (a, b) and s′(t) ̸= 0, then

⟨s(t)− c, s′(t)⟩ = 0

d

dt
⟨s(t)− c, s(t)− c⟩ = 0

⟨s(t)− c, s(t)− c⟩ = C ′

where C ′ is a nonnegative constant.
Therefore ∥s(t) − c∥ is a constant independent of t, i.e. s(t) is a curve maintaining
fixed distance from c. Thus, the claim is agreed.

(c) From part (b)(i), we have
⟨r(t)− c, r′(t)⟩ = 0

Also, as ∥r′(t)∥ is a constant, differentiating ∥r′(t)∥2 with respect to t yields

⟨r′(t), r′′(t)⟩ = 0

In R3, as r(t)− c and r′′(t) are both orthogonal to r′(t), so we have

(r(t)− c)× r′′(t) = K(t)r′(t)

for some scalar functions K(t). Now, it remains to show K(t) is a non-zero constant.
First, differentiating ⟨r(t)− c, r′(t)⟩ = 0 with respect to t, then

⟨r(t)− c, r′′(t)⟩+ ⟨r′(t), r′(t)⟩ = 0

⟨r(t)− c, r′′(t)⟩ = −∥r′(t)∥2 ̸= 0

which is a negative constant. Therefore,

(K(t))2 =
∥r(t)− c∥2∥r′′(t)∥2 − | ⟨r(t)− c, r′′(t)⟩ |2

∥r′(t)∥2

>
∥r′(t)∥4 − (−∥r′(t)∥2)2

∥r′(t)∥2

= 0

So, K(t) is non-zero.
Moreover, we see that K(t) is depending on ∥r(t)− c∥, ∥r′′(t)∥ and ⟨r(t)− c, r′′(t)⟩ are
all constants, so K(t) is constant independent of t.
Thus, we have

(r(t)− c)× r′′(t) = kr′(t)

by putting K(t) = k ∈ R \ {0}.
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7. (a) For any t ∈ (0, 1), since

r′(t) =

(
1,− 1

t2
cos

(
1

t

))
̸= (0, 0)

Thus, this curve is regular.
Also, since

∥r′(t)∥ =

√
1 +

(
− 1

t2
cos

(
1

t

))2

̸= 1

as 1
t2
cos2

(
1
t

)
> 0 for t ∈ (0, 1).

Thus, this curve is not parametrized by arc length.
(b) For positive integer k, we have

r

((
2kπ +

π

2

)−1
)

=

((
2kπ +

π

2

)−1

, sin
(
2kπ +

π

2

))
=

(
2

(4k + 1)π
, 1

)
r
(
(2kπ)−1

)
=

(
(2kπ)−1, sin(2kπ)

)
=

(
1

2kπ
, 0

)
(c) First, we define Ik =

[
2

(4k+1)π
, 1
2kπ

]
for any positive integers k.

Since
max
k∈N

1

2kπ
=

1

2π
< 1

inf
k∈N

2

(4k + 1)π
= 0 ≥ 0

and each Ik is compact, we have ⋃
k∈N

Ik ⊂ (0, 1).

Now, define pk =
(

2
(4k+1)π

, 1
)

and qk =
(

1
2kπ

, 0
)

for each k ∈ N.
Since the arc-length of r(t) over each Ik is∫

|Ik|
∥r′(t)∥ dt > ∥pk − qk∥

=

√
12 +

(
1

2kπ
− 2

(4k + 1)π

)2

> 1

Thus, the arc-length of r(t) over (0, 1) is∫
(0,1)

∥r′(t)∥dt >
∫
⋃

k∈N Ik

∥r′(t)∥ dt

=
∑
k∈N

∫
|Ik|

∥r′(t)∥dt

>
∑
k∈N

(1) → +∞

Thus, r(t) has an infinite length over (0, 1).
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8. (a) Since we want the cycloid lying on the xz-plane, so we may rotate it about the x-axis
anti-clockwisely by an angle α = π

2
, so that we have

Rx

(π
2

)θ − sin θ
1− cos θ

0

 =

1 0 0
0 0 −1
0 1 0

θ − sin θ
1− cos θ

0


=

θ − sin θ
0

1− cos θ


= r(θ)

(b) By direct computation, we have

r′(θ) = (1− cos θ, 0, sin θ)

and

∥r′(θ)∥ =
√

(1− cos θ)2 + sin2 θ

=
√
1− 2 cos θ + (cos2 θ + sin2 θ)

=
√
2(1− cos θ)

=

√
2 · 2 sin2 θ

2

= 2 sin
θ

2
(∵ for θ ∈ (0, 2π), sin

θ

2
> 0)

(c) Since
⟨r′(θ), e3⟩ = sin θ = ∥r′(θ)∥∥e3∥ cosφ(θ)

From part (a), we have ∥r′(θ)∥ = 2 sin θ
2

.
Therefore, we have

cosφ(θ) =
sin θ

2 sin θ
2

=
2 sin θ

2
cos θ

2

2 sin θ
2

= cos
θ

2

As cos is bijective on (0, π), so cosφ(θ) = cos
θ

2
implies that φ(θ) =

θ

2
.

(d) (i) Note that

v(θ) = Ry(φ(θ))u(θ)

=

 cos θ
2

0 sin θ
2

0 1 0
− sin θ

2
0 cos θ

2

cos θ
sin θ
0


=

 cos θ
2
cos θ

sin θ
− sin θ

2
cos θ


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and thus

⟨v(θ), r′(θ)⟩ = (1− cos θ)(cos
θ

2
cos θ) + 0− sin θ(sin

θ

2
cos θ)

= cos θ cos
θ

2
− cos θ

(
cos

θ

2
cos θ + sin

θ

2
sin θ

)
= cos θ cos

θ

2
− cos θ cos

θ

2
= 0

for any θ ∈ (0, 2π).
(ii) In the question, it provides that

γ(θ) = v(θ)︸︷︷︸
Inclined helix with angle θ

2

+ r(θ)︸︷︷︸
rotated curve by the helix

Figure 1: Rotated Helix around the cycloid

By part (d)(i), we have

⟨γ(θ)− r(θ), r′(θ)⟩ = ⟨v(θ), r′(θ)⟩ = 0

and this identity means the direction from r(θ) to γ(θ) is always orthogonal to the
tangential direction r′(θ).

(iii) From part (d)(ii), we have

γ′(θ) = v′(θ) + r′(θ)

=
d

dθ

 1
2
cos 3θ

2
+ 1

2
cos θ

2

sin θ
−1

2
sin 3θ

2
+ 1

2
sin θ

2

+

1− cos θ
0

sin θ


=

−3
4
sin 3θ

2
− 1

4
sin θ

2
+ 1− cos θ

cos θ
−3

4
cos 3θ

2
+ 1

4
cos θ

2
+ sin θ


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Therefore, we have

∥γ′(θ)∥2

=

(
−3

4
sin

3θ

2
− 1

4
sin

θ

2
+ 1− cos θ

)2

+ cos2 θ +

(
−3

4
cos

3θ

2
+

1

4
cos

θ

2
+ sin θ

)2

=

[(
−3

4
sin

3θ

2
− 1

4
sin

θ

2

)2

+

(
−3

4
cos

3θ

2
+

1

4
cos

θ

2

)2
]

︸ ︷︷ ︸
(∗)

+(1− cos θ)2

−
(
3

2
sin

3θ

2
+

1

2
sin

θ

2

)
(1− cos θ) + cos2 θ +

(
−3

2
cos

3θ

2
+

1

2
cos

θ

2

)
sin θ + sin2 θ

=

[
9

16
− 3

8
cos 2θ +

1

16

]
︸ ︷︷ ︸

(∗)

+(1− cos θ)2 −
(
3

2
sin

3θ

2
+

1

2
sin

θ

2

)

+
3

2

(
sin

3θ

2
cos θ − cos

3θ

2
sin θ

)
+

1

2

(
cos

θ

2
sin θ + sin

θ

2
cos θ

)
+ (cos2 θ + sin2 θ)

=
5

8
− 3

8
cos 2θ + (1− cos θ)2 −

(
3

2
sin

3θ

2
+

1

2
sin

θ

2

)
+

3

2
sin

θ

2
+

1

2
sin

3θ

2
+ 1

=
25

8
+

1

8
cos 2θ − sin

3θ

2
− 2 cos θ + sin

θ

2

and the last line is followed from (1− cos θ)2 = 1− 2 cos θ + 1+cos 2θ
2

.
Thus, the arc length of γ(θ) is∫ 2π

0

∥γ′(θ)∥ dθ =

∫ 2π

0

√
25

8
+

1

8
cos 2θ − sin

3θ

2
− 2 cos θ + sin

θ

2
dθ

=
1

2
√
2

∫ 2π

0

√
25 + cos 2θ − 8 sin

3θ

2
− 16 cos θ + 8 sin

θ

2
dθ
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